theoretical results for a molecule with the $\mathrm{Cr}-\mathrm{Cr}$ distance and axial interactions characteristic of the solid state with the experimental spectrum given by isolated gaseous molecules. As for the calculation ${ }^{5}$ per se, it appears to have given a qualitatively erroneous description of the ground state electronic structure because correlation energies were ignored. Inclusion of those effects of configuration interaction expected to be of greatest importance gives a ground state with appreciable $\mathrm{Cr}-\mathrm{Cr}$ bonding, as recently shown by M . Benard and A . Veillard, Nouv. J. Chem., 1, 97 (1977). An SCF-X α-SW calculation by G. G. Stanley and F. A. C., Inorg. Chem., in press, gives a ground state with a clear-cut quadruple bond, albeit a weaker one than that in $\mathrm{Mo}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{4}$.

Acknowledgment. We thank the National Science Foundation for support of this investigation through Grant No. GP33142X.

Supplementary Material Available; Listing of structure factor amplitudes (3 pages). Ordering information is given on any current masthead page.

References and Notes

(1) E. Peligot, C. R. Hebd. Seances Acad. Sci., 19, 609-611(1844); Ann. Chim. Phys., 12, 528-549 (1844).
(2) F. A. Cotton, B. G. DeBoer, M. D. LaPrade, J. R. Pipal, and D. A. Ucko, Acta Crystallogr. Sect. B, 27, 1644-1671(1971).
(3) F. A. Cotton, Z. C. Mester, and T. R. Webb, Acta Crystallogr. Sect. B, 30, 2768 (1974).
(4) G. M. Brown and R. Chidambaram, Acta Crystallogr., Sect. B, 29, 2393 (1973).
(5) C. D. Garner, I. H. Hillier, M. F. Guest, J. C. Green, and A. W. Coleman, Chem. Phys. Lett., 41, 91 (1976).
(6) B. N. Figgis and R. L. Martin, J. Chem. Soc., 3837 (1956).
(7) L. R. Ocone and B. P. Block, Inorg. Synth., 8, 125 (1966).
(8) F. A. Cotton, B. A. Frenz, G. Deganello, and A. Shaver, J. Organomet. Chem., 50, 227 (1973).
(9) Computer programs used on a PDP 11/45 computer at the Molecular Structure Corporation, College Station, Texas, were those of the EnrafNonius structure determination package.
(10) Supplementary material.
(11) C. D. Garner, R. G. Senior, and T. J. King, J. Am. Chem. Soc., 98, 3526 (1976).
(12) F. A. Cotton and J. G. Norman, Jr., J. Coord. Chem., 1, 161 (1971)
(13) F. A. Cotton and J. G. Norman, Jr., J. Am. Chem. Soc., 94, 5697 (1972).
(14) D. M. Collins, F. A. Cotton, and C. A. Murillo, Inorg. Chem., 15, 1861 (1976).
(15) D. M. Collins, F. A. Cotton, and C. A. Murillo, Inorg. Chem., 15, 2950 (1976).

Synthesis, Structure, and Reactivity of μ-Diphenylacetylenebis(η^{5}-pentaphenylcyclopentadienyl)dipalladium(I) and Related Analogues

Thomas R. Jack, Christopher J. May, and John Powell*
Contribution from the Lash Miller Chemical Laboratories, University of Toronto, Toronto, Ontario, Canada, M5S 1A1. Received January 3, 1977

Abstract

The reaction of diphenylacetylene with palladium acetate in alcohols leads to the formation of μ-diphenylacetylene-$\operatorname{bis}\left(\eta^{5}\right.$-pentaphenylcyclopentadienyl)dipalladium(1). Similar compounds of the general form $\left[\left(\mu-\mathrm{RC}_{2} \mathrm{R}^{\prime}\right)\left(\eta^{5}-\mathrm{Ar}_{3} \mathrm{RR}^{\prime} \mathrm{C}_{5}\right)_{2} \mathrm{Pd}_{2}\right]$ are more readily prepared from the reaction of the acetylene $\mathrm{RC}_{2} \mathrm{R}^{\prime}$ with endo-alkoxytetraarylcyclobutenylpalladium acetate in alcohol. The formation of pentasubstituted cyclopentadienyl ligands from acetylenes is a novel reaction that involves an unusually facile cleavage of an acetylene triple bond. One-half of the acetylene cleaved is lost as the ortho ester $\operatorname{ArC}(\mathrm{OR})_{3}$. A mechanism for this reaction is proposed. The molecules $\left[\left(\mu-\mathrm{RC}_{2} \mathrm{R}^{\prime}\right)\left(\eta^{5}-\mathrm{Ar}_{3} \mathrm{RR}^{\prime} \mathrm{C}_{5}\right)_{2} \mathrm{Pd}_{2}\right]$ undergo bridge acetylene displacement reactions, react with NO to give [$\left(\eta^{5}-\mathrm{Ar}_{3} \mathrm{RR}^{\prime} \mathrm{C}_{5}\right) \mathrm{PdNO}$], and react with $\mathrm{HX}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ to give $\left[\left(\eta^{5}-\mathrm{Ar}_{3} \mathrm{RR}^{\prime} \mathrm{C}_{5}\right)_{2^{-}}\right.$ $\mathrm{Pd}_{2} \mathrm{X}_{2}$] and [$\left.\left(\eta^{5}-\mathrm{Ar}_{3} \mathrm{RR}^{\prime} \mathrm{C}_{5}\right)_{2} \mathrm{Pd}_{2} \mathrm{HX}\right]$. The latter compounds are tentatively formulated as bridging hydrido complexes.

Recent work by Maitlis and co-workers on the mechanism of the palladium(II) chloride induced cyclotrimerization of acetylenes to benzenes has demonstrated the intermediacy of cyclopentadienylmethyl complexes in the reaction pathway. ${ }^{1,2}$ In several cases these complexes have been isolated and in others decomposition of these intermediates leads to the formation of benzenes and/or cyclopentadiene products. In this paper we report that under suitable conditions palladium complexes containing η^{5}-pentasubstituted cyclopentadienyl ligands may be isolated from the reaction of acetylenes with a variety of palladium compounds in alcoholic solutions.

Results and Discussion

(i) Synthesis and Structure of $\left[(\mu-\mathrm{PhC} \equiv \mathbf{C P h})\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Ph}_{5} \mathbf{P d}\right)_{2}\right]$. The reaction of diphenylacetylene with palladium acetate in methanol at $25^{\circ} \mathrm{C}$ gave a dark green crystalline diamagnetic solid 1. Microanalysis and molecular weight data (Table I) for the recrystallized compound 1 showed it to have the stoichiometry $\mathrm{Pd}_{2} \mathrm{C}_{84} \mathrm{H}_{60} \mathrm{~S}$ (where $\mathrm{S}=\mathrm{CHCl}_{3}$ or $\mathrm{C}_{6} \mathrm{H}_{6}$ depending on the solvent used for the recrystallization). Attempts to ascertain the structure of $\mathbf{1}$ by chemical means proved fruitless
and finally a crystal was grown (in benzene) suitable for x-ray diffraction studies, The molecular structure of $\mathbf{1}$ as determined by Nyburg and co-workers ${ }^{3}$ is shown in Figure 1. The molecule contains a dinuclear $\mathrm{Pd}(\mathrm{I})$ unit, bridged orthogonally by a diphenylacetylene, and two pentaphenylcyclopentadienyl ligands each of which is bound to one of the $\operatorname{Pd}(\mathrm{I})$'s. This structure is novel in several features: it is one of the few established stable formally $\mathrm{Pd}(\mathrm{I})$ species; ${ }^{4-12}$ it is a rare example of an acetylene bridging two palladiums; and it represents a significant addition to the number of known cyclopentadi-enyl-palladium complexes. ${ }^{2}$ Despite its novelty, complex 1 completes the occurrence of this structure for the nickel triad being analogous to the complex $\left[(\mu-\mathrm{PhC} \equiv \mathrm{CPh})\left(\eta^{5}-\right.\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Ni}\right)_{2}\right]^{13}$ and related to the complex $\left[\left(\mu-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{C}_{5} \mathrm{H}_{5}\right)\right.$ -$\left.\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Pt}\right)_{2}\right] .{ }^{14}$ The intermetallic Pd-Pd distance ($2.64 \AA$) is significantly shorter than that found in the elemental metal $(2.75 \AA)^{15}$ and is comparable to the Pd-Pd bond length reported by Allegra et al. ${ }^{4}$ for the complexes $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\right.$ $\left.\mathrm{PdAlCl}_{3} \mathrm{X}\right]_{2}\left(2.57 \AA ; \mathrm{X}=\mathrm{Cl}\right.$ or $\left.\mathrm{AlCl}_{4}\right)$. The bridging acetylene has a carbon-carbon distance of $1.33 \AA$ in close agreement with that observed in the nickel analogue $\left[(\mu-\mathrm{PhC} \equiv \mathrm{CPh})\left(\left(\eta^{5}-\right.\right.\right.$

Table I. Analytical and Spectroscopic Data for the Complexes $\left\{\left(\eta^{5}-\mathrm{Ar}_{3} \mathrm{R}^{1} \mathrm{R}^{2} \mathrm{C}_{5}\right)_{2}\left(\mu-\mathrm{R}^{3} \mathrm{C}=\mathrm{CR}^{4}\right) \mathrm{Pd}_{2}\right]$

13 a 13 b	p-tolyl	p + tolyl	$p+$ tolyl	p-tolyl	p-tolyl	Green prisms	220 dec	79.83	6.31	74.81	$6.31{ }^{\text {e }}$	672	(32.5)	396	$\begin{array}{r} 8 \mathrm{CH}_{3} \text { (r) } 2.15 ; \\ \mathrm{CH}_{3} \text { (b) } 2.30 \end{array}$
13b	p-tolyl	$\begin{aligned} & p-\mathrm{MeO} \\ & \mathrm{C}_{6} \mathrm{H}_{4} \end{aligned}$	$\begin{aligned} & p-\mathrm{MeO} \\ & \mathrm{C}_{6} \mathrm{H}_{4} \end{aligned}$	$\begin{aligned} & p-\mathrm{McO} \\ & \mathrm{C}_{6} \mathrm{H}_{4} \end{aligned}$	$\begin{aligned} & p \cdot \mathrm{McO} \\ & \mathrm{C}_{6} \mathrm{H}_{4} \end{aligned}$	Green prisms	$\begin{gathered} 150- \\ 153 \end{gathered}$					674	(>26.0)	400	$\begin{gathered} \delta \mathrm{CH}_{3}(\mathrm{r}) 2.32 \\ \mathrm{OMe}(\mathrm{r}) 3.58 \end{gathered}$ $\text { OMe (b) } 3.73$

Abstract

 $1253 ;^{l}$ calcd 994, found $916 ;{ }^{m}$ calcd 1095 , found $995 ;^{n}$ calcd 1090 , found 1082 .

Table II. Analytical and Spectroscopic Data for the Pentasubstituted Cyclopentadienyl Palladium Nitrosyl and Palladium(11) Derivatives

$\begin{aligned} & \stackrel{L}{n} \\ & \stackrel{3}{3} \end{aligned}$	Complex		Crystalline appearance	$\mathrm{Mp},{ }^{\circ} \mathrm{C}$	El-						Molwt, ${ }^{d} \quad$absorption bands				Mass spectral data, ${ }^{e}$ major organic fragments, ion (assignment m / e)	${ }^{1} H$ NMR and 1R Data f	
			Caled		Clor Br	--	Found	$\begin{gathered} \mathrm{Cl} \text { or } \\ \mathrm{Br} \end{gathered}$									
										Mol wt, ${ }^{d}$ $\mathrm{g} / \mathrm{mol}$		$\begin{gathered} \lambda_{\max },\left(\epsilon \times 10^{-3}\right. \\ \left.\operatorname{nm} \quad \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right) \end{gathered}$					
	No.	Forinula				C	H		C	H	Calcd			Found			
3	14 a	$\begin{aligned} & \left(\mathrm{C}_{4} \mathrm{Ph}_{4} \mathrm{OMe}\right) \mathrm{Pd}\left\{\mathrm{C}_{5} \mathrm{Ph}_{3}-\right. \\ & \left.\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}\right\} \end{aligned}$		Red prisms	177-178	74.46	4.91		74.37	4.99		903	937	417	(11.2)	$\begin{gathered} \mathrm{P}^{+}=\mathrm{C}_{5} \mathrm{Ph}_{3}\left(\mathrm{CO}_{2} \mathrm{Me}_{2} \mathrm{H}^{+}(410)\right. \\ \mathrm{C}_{4} \mathrm{Ph}_{4} \mathrm{OClH}_{2}^{+}+(386) \end{gathered}$	$\begin{gathered} \delta \mathrm{CO}_{2} \mathrm{Me} 3.43(\mathrm{~s}) \\ \text { OMe } 3.34 \mathrm{~s} \end{gathered}$
$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	14b	$\begin{aligned} & \left(\mathrm{C}_{4} \mathrm{Ph}_{4} \mathrm{OFt}\right) \mathrm{Pd}\left\{\mathrm{C}_{5} \mathrm{Ph}_{3}\right. \\ & \left.\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}\right\} \end{aligned}$		Red prisnıs	178-180	74.63	5.05		74.74	5.08		917	884	419	(10.9)	$\begin{aligned} & \mathrm{P}^{+}=\mathrm{C}_{5} \mathrm{Ph}_{3}\left(\mathrm{CO}_{2} \mathrm{Me}_{2} \mathrm{II}^{+}(410)\right. \\ & \mathrm{C}_{4} \mathrm{Ph}_{4} \mathrm{OC}_{2} \mathrm{H}_{4}^{+}(400) \end{aligned}$	$\begin{aligned} & \delta \mathrm{CO}_{2} \mathrm{Me} 3.40(\mathrm{~s}) \\ & \mathrm{OEt} 4.72 \mathrm{q} \\ & 1.07 \mathrm{t} \end{aligned}$
$\stackrel{\text { \% }}{\sim}$	15a	$\left(\mathrm{C}_{5} \mathrm{Ph}_{5}\right) \mathrm{PdNO}$	Purple prisms ${ }{ }^{\text {b }}$	151-154	68.40	4.20		68.90	$4.37 b$				539	(3.3)	$\begin{aligned} & \mathrm{P}^{+}=\mathrm{C}_{5} \mathrm{Ph}_{5} \mathrm{H}^{+}(446) ; \text { "no } \\ & \text { peaks at } 178\left(\mathrm{C}_{2} \mathrm{Ph}_{2}{ }^{+}\right)^{"} \end{aligned}$	$\nu_{\mathrm{NO}}{ }^{1775 \mathrm{~cm}^{-1}}$	
	15b	$\left(\mathrm{C}_{5}\right.$-p-tolyl ${ }_{5}$) PdNO	Purple solid										543	(3.0)	$\mathrm{P}^{+}=\mathrm{C}_{5}-\mathrm{p}$ + tolyl $_{5} \mathrm{H}^{+}$(516)	$\nu_{\mathrm{NO}} 1756 \mathrm{~cm}^{-1}$	
\pm	15 c	$\left(\mathrm{C}_{5} \mathrm{Ph}_{3} \mathrm{Et}_{2}\right) \mathrm{PdNO}$	Purple glass	55-60	66.74	5.19		66.59	5.20				523	(3.1)	$\begin{gathered} \mathrm{P}^{+}=\mathrm{C}_{5} \mathrm{Ph}_{3} \mathrm{EtC}_{2} \mathrm{H}_{4}^{+}(348) ; \text { no } \\ \text { peaks at } 82\left(\mathrm{C}_{6} \mathrm{H}_{10}{ }^{+}\right) \end{gathered}$	$\text { NO } 1755 \mathrm{~cm}^{-1}$	
苞	$16 a$	$\left(\mathrm{C}_{5} \mathrm{Ph}_{5}\right)_{2} \mathrm{Pd}_{2} \mathrm{HCl}$	Purple solid	167-170	73.72	4.51	3.11	73.87	4.67	4.15	1139	1210	560	(7.1)	$\begin{aligned} & \mathrm{P}^{+}=\mathrm{C}_{5} \mathrm{Ph}_{5} \mathrm{H}^{+}(446) ; \text { no pcaks } \\ & \text { at } 178\left(\mathrm{C}_{2} \mathrm{Ph}_{2}{ }^{+}\right) \end{aligned}$	$\begin{gathered} \delta \mathrm{CH}_{3} \mathrm{I} .20 \mathrm{t} ; \\ \delta \mathrm{CH}_{2} 2.54 \mathrm{q} \end{gathered}$	
e_{0}^{n}	16b	$\left(\mathrm{C}_{5} \mathrm{Ph}_{5}\right)_{2} \mathrm{Pd}_{2} \mathrm{HBr}$	Blue-purple solid	170-173	70.94	4.30	6.75	70.86	4.34	6.68			532	(4.4)	$\begin{aligned} & \mathrm{P}^{+}=\mathrm{C}_{5} \mathrm{Ph}_{5} \mathrm{II}^{+}(446) ; \text { no pcaks } \\ & \text { at } 178\left(\mathrm{C}_{2} \mathrm{Ph}_{2}^{+}\right) \end{aligned}$		
$\stackrel{1}{i}$	16 c	$\left(\mathrm{C}_{5}-p-\mathrm{tolyl}\right)_{5} \mathrm{Pd}_{2} \mathrm{HCl}$	Purple solid	134-138									570	(9.6)		$\delta \mathrm{CH}_{3} 2.10 \mathrm{~s}$	
\square	17 a	$\left(\mathrm{C}_{5} \mathrm{Ph}_{5}\right)_{2} \mathrm{Pd}_{2} \mathrm{Cl}_{2}$	Brown prisms	162-163	71.56	4.29	6.04	71.44	4.32	5.88							
\|	1	17 b	$\left(\mathrm{C}_{5} \mathrm{Ph}_{5}\right)_{2} \mathrm{Pd}_{2} \mathrm{Br}_{2}$	Orange-brown solid prisms ${ }^{c}$	137-140	69.34	4.40	11.25	70.33	4.38	$10.91{ }^{c}$						
\bigcirc	17c	$\left.\left(\mathrm{C}_{5} \text {-p } \text { - tolyl }\right)_{5}\right)_{2} \mathrm{Pd}_{2} \mathrm{Cl}_{2}$	Brown solid	$160-170$													
$\frac{3}{3}$	18	$\left(\mathrm{C}_{5} \mathrm{Ph}_{5}\right) \mathrm{Pdhfac}$	Brown glass ${ }^{\text {a }}$	$68-72$	58.35	3.34		58.80	$3.45{ }^{\text {a }}$						$\mathrm{P}^{+}=\mathrm{C}_{5} \mathrm{Ph}_{5} \mathrm{Pdhfac}^{+}(748)^{e}$	$\begin{gathered} \delta \mathrm{hfac} \rightarrow \mathrm{CH} \\ 5.85 \mathrm{~s} \end{gathered}$	
$\stackrel{3}{6}$	19	$\left(\mathrm{C}_{5} \mathrm{Ph}_{5}\right) \mathrm{Pd}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right) \mathrm{Cl}$	Pale green prisms	$181 \cdots 187$	71.18	5.00	4.89	70.98	5.19	4.89			674		$\begin{aligned} & \mathrm{P}^{+}=\mathrm{C}_{5} \mathrm{Ph}_{5} \mathrm{II}^{+}(446) ; \mathrm{PMe}_{2}^{-} \\ & \mathrm{Ph}^{+}(138) \end{aligned}$	$\begin{aligned} & \delta \mathrm{Me} 1.62 \mathrm{~d}, J_{\mathrm{PH}} \\ & =10.6 \mathrm{~Hz} \end{aligned}$	

 data recorded in CDCl_{3} solution at $37{ }^{\circ} \mathrm{C}$. Aromatic resonances not included. $s=$ singlet, $\mathrm{d}=1: 1$ doublet, $1=1: 2: 1$ triplet, $\mathrm{q}=1: 3: 3: 1$ quartet. IR data recorded as Nujol inulls.

Figure 1. Molecular structure of 1 as determined by x-ray crystallography. ${ }^{3}$
$\left.\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Ni}\right)_{2}\right],{ }^{13} 1.35 \AA$. The palladium-cyclopentadienyl carbon distance varies from 2.27 to $2.46 \AA$, which in light of the steric hindrance involved in the packing of the phenyl substituents in compound $\mathbf{1}$ is comparable to the $\mathrm{Pd}-\mathrm{C}_{5}$ distance in $\left[\left(\eta^{3}\right.\right.$-allyl $\left.)\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Pd}\right]$ of $2.24 \AA^{16}$

The compound $\mathbf{1}$ can also be obtained from the reaction of diphenylactylene with either $\mathrm{Pd}\left(\mathrm{NO}_{3}\right)_{2} \cdot x \mathrm{H}_{2} \mathrm{O}, \mathrm{Pd}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}$, or $\mathrm{Pd}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}$ (acetone $)_{2}$. Ethanol may be used in place of methanol as the solvent. The best yields of 1 are obtained with palladium acetate and diphenylacetylene in MeOH . The yields for this reaction range from 44 to 55% incorporation of the reagent palladium into the product. Of course, palladium acetate itself decomposes to elemental palladium in alcohol at a competitive rate. ${ }^{17}$ The formation of $\mathbf{1}$ from $\mathrm{PhC} \equiv \mathrm{CPh}$ is most unusual in that a $\mathrm{C}_{5} \mathrm{Ph}_{5}^{-}$ring tas been built up from $\mathrm{PhC} \equiv \mathrm{CPh}$ units. This requires the facile cleavage of a car-bon-carbon triple bond in a room temperature reaction. Very few instances of such a cleavage are known. ${ }^{18}$ The formation of a cyclopentadienyl ring from acetylenes also has limited precedents, all of which occur under severe reaction conditions. ${ }^{19}$ The nature of the reaction is therefore of considerable interest.

Analysis of the filtrate, after removal of $\mathbf{1}$, by NMR and mass spectroscopy identified trimethoxy orthobenzoate, $\mathrm{PhC}(\mathrm{OMe})_{3}$, as the major organic product together with a small amount of methyl benzoate. Under anhydrous conditions (MeOH distilled of $\mathrm{Mg}(\mathrm{OMe})_{2}$) the reaction gave $\mathrm{PhC}(\mathrm{OMe})_{3}$ as the sole organic product, which suggests that the methyl benzoate is formed by hydrolysis of the initially formed $\mathrm{PhC}(\mathrm{OMe})_{3}$. A quantitative analysis of product yields showed that 2 mol of $\mathrm{PhC}(\mathrm{OMe})_{3}$ were formed per mole of 1 (i.e., one $\mathrm{PhC}(\mathrm{OMe})_{3}$ per $\mathrm{C}_{5} \mathrm{Ph}_{5}$ ring). It is of note that neither the acetal, $\mathrm{PhCH}(\mathrm{OMe})_{2}$, nor hexaphenylbenzene was found among the reaction products. The absence of these compounds is important, since an acetal is the product of ring contraction of hexamethyl-Dewar benzene by $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ in acidic media containing SnCl_{2} to give the (η^{4}-pentamethylcyclopentadiene) PtCl_{2} species. ${ }^{20,21}$ Hexaphenylbenzene, $\mathrm{C}_{6} \mathrm{Ph}_{6}$, is a product found in $\mathrm{PhC} \equiv \mathrm{CPh} / \mathrm{Pd}(\mathrm{II})$ halide systems.

Since palladium acetate itself decomposes in alcohol to elemental palladium, no meaningful quantitative measurement of palladium as a reaction product could be attempted. How ever, based on the other reagents and products, the following stoichiometry has been adopted for the formation of 1 from $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{PhC} \equiv \mathrm{CPh}$ in $\mathrm{MeOH}:$

$$
\begin{align*}
{\left[\mathrm{Pd}(\mathrm{OAc})_{2}\right]_{3}+7 \mathrm{PhC} \equiv } & \mathrm{C}
\end{align*}
$$

Scheme I. Mechanism Proposed for the Formation of 1 from the Reaction of Diphenylacetylene with Palladium Acetate in Methanol

Based on eq 1 yields of 1 were usually in the range of 70 85%.
(ii) The Mechanism of the Formation of μ-Diphenylacetyl-ene-bis(η^{5}-pentaphenylcyclopentadienyl)dipalladium(I). A plausible mechanism for the formation of $\mathbf{1}$ via eq 1 is shown in Scheme I. The reaction path, as postulated, proceeds by the coordination of diphenylacetylene to Pd (II) via a π bond followed by a nucleophilic attack of an alkoxy group on the coordinated acetylene to give a σ-vinylic species. (This nucleophilic attack has been shown as trans in Scheme I on the basis of x-ray crystallographic data ${ }^{22}$). Further insertion of two diphenylacetylene molecules followed by rearrangement of the conformation of the triene chain yields the postulated species 3. This can then ring close to a pentaphenylcyclopentadiene intermediate 4.

Support for the pentaphenylcyclopentadiene species 4 can be obtained from Maitlis's work, since the reaction sequence to this point in Scheme I is as proposed by Maitlis for the formation of hexaphenylbenzene, $\mathrm{C}_{6} \mathrm{Ph}_{6}$, from diphenylacetylene and " $\mathrm{Pd}^{11} \mathrm{Cl}_{2}$ " in organic solvents. ${ }^{1,2}$ In Maitlis's system, the nucleophile is the chloride ion (rather than MeO) and the postulated pentaphenylcyclopentadiene intermediate 5 (see Scheme II) (the analogue of $\mathbf{4}$ in Scheme I) undergoes a ring expansion reaction with the subsequent dissociation of the $\mathrm{C}_{6} \mathrm{Ph}_{6}$ molecule (Scheme II). The postulated structures of the pentasubstituted cyclopentadiene species 4 (Scheme I) and 5 (Scheme II) are supported by two structurally well-defined analogues 6 and 7 reported by Maitlis and prepared from the

oligomerization of the acetylenes, $R C \equiv C R(R=M e$, COOMe), by $\mathrm{Pd}(\mathrm{II})$ complexes. ${ }^{23,24}$ The proposed pentaphenylcyclopentadiene species 4 (Scheme I) yields the dinuclear green compound 1 by the reduction of palladium and formation of $\mathrm{PhC}(\mathrm{OMe})_{3}$. The exact mechanism of this redox

Scheme II. Intermediates in the Formation of Hexaphenylbenzene from the Reaction of Diphenylacetylene with "Palladium Chloride" According to Maitlis ${ }^{\text {, }, 2}$

reaction is unknown, but a plausible route is shown in Scheme I.

In 1960, Malatesta et al. ${ }^{25,26}$ reported that the reaction of diphenylacetylene and " $\mathrm{Pd}^{11} \mathrm{Cl}_{2}$ " in alcohol precipitates the complex [(endo- η^{3}-alkoxytetraphenylcyclobutenyl) PdCl_{2} (8) as a yellow solid for which the mechanism shown in Scheme III has since been proposed. The trans attack of methoxy in Scheme III leads to a postulated σ-butadienyl species 9 the a nalogue of $\mathbf{2}$ in Scheme I\} which can stereospecifically ring close to the endo-alkoxycyclobutenyl isomer $8(\mathrm{OR}=\mathrm{OMe})$ by a Woodward-Hoffmann allowed process. ${ }^{1,2}$ Presumably it is the presence of the chloride ligand that promotes the precipitation of the product 8, [(endo- η^{3}-alkoxytetraphenylcyclobutenyl) PdCl_{2}, in this system since in its absence, an intermediate of the type $\mathbf{2}$ has been postulated to lead to the formation of $\left[(\mu-\mathrm{PhC} \equiv \mathrm{CPh})\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Ph}_{5} \mathrm{Pd}\right)_{2}\right] \mathbf{1}$, see Scheme I. In the light of such a hypothesis, removal of the chloride ligand from 8 in an alcoholic solution of diphenylacetylene may lead to the formation of the green compound 1 by a ring opening of the endo- η^{3}-alkoxytetraphenylcyclobutenyl ring to regenerate the intermediate $\mathbf{2}$ in the mechanism Scheme I; i.e., this ring opening, if operative, would literally "plug in" to Scheme I for the formation of $\mathbf{1}$ at the proposed intermediate 2.
(iii) Formation and Reactivity of "endo- $\mathrm{C}_{4} \mathrm{Ph}_{4} \mathrm{ORPdOAc"}$. It has been previously established that [(endo- $\left.\mathrm{C}_{4} \mathrm{Ph}_{4} \mathrm{OR}\right)$ $\mathrm{PdCl}]_{2}(8)$ will not react with diphenylacetylene to give $\mathrm{C}_{6} \mathrm{Ph}_{6} .{ }^{27}$ Indeed a mixture of $\left[\left(\text { endo }-\mathrm{C}_{4} \mathrm{Ph}_{4} \mathrm{OR}\right) \mathrm{PdCl}\right]_{2}$ and $\mathrm{PhC} \equiv \mathrm{CPh}$ in CDCl_{3} remains unreacted after 3 days. However, in the presence of excess sodium acetate in warm MeOH , the mixture of $\mathrm{PhC} \equiv \mathrm{CPh}$ and $\left[\left(\text { endo }-\mathrm{C}_{4} \mathrm{Ph}_{4} \mathrm{OMe}\right) \mathrm{PdCl}\right]_{2}$ quickly assumes the green color characteristic of $[(\mu$ $\left.\mathrm{PhC} \equiv \mathrm{CPh})\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Ph}_{5} \mathrm{Pd}\right)_{2}\right]$. Apparently, then, the acetate ion can promote the formation of 1 from [(endo- $\mathrm{C}_{4} \mathrm{Ph}_{4} \mathrm{OMe}$)$\mathrm{PdCl}]_{2}$. The total removal of chloride ion from [(endo$\left.\left.\mathrm{C}_{4} \mathrm{Ph}_{4} \mathrm{OMe}\right) \mathrm{PdCl}\right]_{2}$ by the precipitation of MCl , where $\mathrm{M}=$ Ag or Tl on reaction of 8 with MOAc, leaves "endo$\mathrm{C}_{4} \mathrm{Ph}_{4} \mathrm{ORPdOAc"}(\mathbf{1 0})$ in solution.
$\left[\left(\text { endo }-\mathrm{C}_{4} \mathrm{Ph}_{4} \mathrm{OR}\right) \mathrm{PdCl}\right]_{2}+2 \mathrm{MOAc}$

$$
\begin{gather*}
\rightarrow \underset{\mathrm{MCl} \downarrow+" \text { endo }-\mathrm{C}_{4} \mathrm{Ph}_{4} \mathrm{ORPdOAc} "}{\text { (the yield of } \mathrm{AgCl} \text { is } 96 \% \text {) }} \tag{2}\\
\mathrm{OR}=\mathrm{OMe}, \mathrm{OEt} ; \mathrm{M}=\mathrm{Ag}, \mathrm{Tl}
\end{gather*}
$$

The species "endo- $\mathrm{C}_{4} \mathrm{Ph}_{4} \mathrm{OMePdOAc}$ " so produced can be isolated as an amorphous orange solid which has a carboxylate infrared spectrum typical of a bridging bidentate acetate (ν_{CO} asymm $1575 \mathrm{~cm}^{-1}$ and ν_{co} symm $1403 \mathrm{~cm}^{-1}$). The species in solution, however, is of ill-defined structure. The osmometric molecular weight in $\mathrm{CHCl}_{3}, 37^{\circ} \mathrm{C}$ was much less than that expected of a dimer ($762 \mathrm{~g} / \mathrm{mol}$ observed compared to 1104 $\mathrm{g} / \mathrm{mol}$ calculated for dimer). The ${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3} integrated according to the stoichiometry "endo- $\mathrm{C}_{4} \mathrm{Ph}_{4} \mathrm{O}$ MePdOAc", but was complex and temperature dependent, having no less than five methoxy resonances and two acetate resonances at $-20^{\circ} \mathrm{C}$. By analogy with our studies of "endo-

Scheme III. Mechanism Proposed for the Formation of endo* Alkoxyltetraphenylcyclobutenylpalladium Chloride (8) from the Reaction of Diphenylacetylene with Bisbenzonitrilepalladium Chloride in Methanol or Ethanol ${ }^{1,2}$

$\mathrm{C}_{4} \mathrm{Ph}_{4} \mathrm{OMePd}(\mathrm{acac}){ }^{\prime 2}{ }^{22}$ the observed complexity of the NMR spectrum of "endo $-\mathrm{C}_{4} \mathrm{Ph}_{4} \mathrm{OMePdOAc}$ " is consistent with an equilibrium between endo-alkoxycyclobutenyl 10 and ring-

opened alkoxybutadienyl species of the type $\mathbf{2 a}$. For $n=2$, several conformational isomers are possible.

Diphenylacetylene reacted with "endo- $\mathrm{C}_{4} \mathrm{Ph}_{4} \mathrm{OMePdOAc}$ " in methanol to give $\left[(\mu-\mathrm{PhC} \equiv \mathrm{CPh})\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Ph}_{5} \mathrm{Pd}\right)_{2}\right](1)$, $\mathrm{PhC}(\mathrm{OMe})_{3}, \mathrm{HOAc}$, and elemental palladium (eq 3).

The reaction of "endo- $\mathrm{C}_{4} \mathrm{Ph}_{4} \mathrm{OM}$ PPdOAc" with diphenylacetylene must involve the incorporation of part of the endo- $\mathrm{C}_{4} \mathrm{Ph}_{4} \mathrm{OMe}$ ligand into the product $[(\mu-\mathrm{PhC} \equiv \mathrm{CPh})$ $\left.\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Ph}_{5} \mathrm{Pd}\right)_{2}\right]$, as implied by the stoichiometry of eq 3 , since

```
\(3 / 2\left[\left(\right.\right.\) endo \(\cdot \mathrm{C}_{4} \mathrm{Ph}_{4} \mathrm{OMePdCl}_{2}+3 \mathrm{AgOAc}\)
\(\downarrow-3 \mathrm{AgCl}\)
\(3^{\prime \prime}\)-endo-C4 \(\mathrm{Ph}_{4} \mathrm{OMePdOAc}^{\prime \prime}+3 \mathrm{PhC} \equiv \mathrm{CPh}\)
\(\xrightarrow[\mathrm{MeOH}]{ }\left[(\mu-\mathrm{PhC} \equiv \mathrm{CPh})\left(\eta^{5} \cdot \mathrm{C}_{5} \mathrm{Ph}_{5} \mathrm{Pd}\right)_{2}\right]\)
\(+\underbrace{\left.\mathrm{H}^{+}+\mathrm{C}_{4} \mathrm{Ph}_{4} \mathrm{OMe}^{-}\right\}}_{\text {fate unknown }}\}+\mathrm{Pd}(\mathrm{O})+3 \mathrm{HOAc}+2 \mathrm{PhC}(\mathrm{OMe})_{3}\)
the yield of \(\mathbf{1}\) is too large to arise solely from the added diphenylacetylene. If this reaction proceeds as postulated in Scheme I, then the use of ethanol as the solvent for the reaction (eq 3) should lead to the formation of the mixed orthobenzoate, \(\mathrm{PhC}(\mathrm{OMe})(\mathrm{OEt})_{2}\). To test the validity of this prediction, this reaction was carried out along with the three other possible variations as shown in the equation
\[
\begin{align*}
\text { "endo }-\mathrm{C}_{4} \mathrm{Ph}_{4} \mathrm{ORPdOAc} " & +\mathrm{PhC} \equiv \mathrm{CPh} \\
& \xrightarrow{\mathrm{R}^{\prime} \mathrm{OH}}[(\mu-\mathrm{PhC} \equiv
\end{aligned} \begin{aligned}
&\mathrm{CPh})\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Ph}_{5} \mathrm{Pd}_{2}\right] \\
&+2 \mathrm{PhC}(\mathrm{OR})\left(\mathrm{OR}^{1}\right)_{2}+\ldots \tag{4}
\end{align*}
\]
(i) \(\mathrm{OR}=\mathrm{OMe}, \mathrm{OR}^{1}=\mathrm{OMe}\)
(ii) \(\mathrm{OR}=\mathrm{OMe}, \mathrm{OR}^{1}=\mathrm{OEt}\)
(iii) \(\mathrm{OR}=\mathrm{OEt}, \mathrm{OR}^{1}=\mathrm{OMe}\)
(iv) \(\mathrm{OR}=\mathrm{OEt}, \mathrm{OR}^{1}=\mathrm{OEt}\)

In all cases, the predicted orthoester ( \(1 \mathrm{~mol} / \mathrm{C}_{5} \mathrm{Ph}_{5}\) ring and identified by \({ }^{1} \mathrm{H}\) NMR and mass spectroscopy) was produced in accord with the postulated mechanism. In the original


Figure 2. The 'H NMR spectra in \(\mathrm{CDCl}_{3}, 34^{\circ} \mathrm{C}\), of: (A) [ \((\mu\) \(\left.\mathrm{EtC} \equiv \mathrm{CEt})\left(\eta^{5}-\mathrm{Ph}_{3} \mathrm{Et}_{2} \mathrm{C}_{5}\right)_{2} \mathrm{Pd}_{2}\right] \quad\) (11a); and (B) \(\left[\left(\mu-p, p^{\prime}-\right.\right.\) \(\left.\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Br}\right)\left(\eta^{5}-\mathrm{Ph}_{3} \mathrm{Et}_{2} \mathrm{C}_{5}\right)_{2} \mathrm{Pd}_{2}\) ] (12g) prepared from 11a by reaction (eq 6) with excess \(p, p^{\prime}-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{C}=\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Br}\).
preparation of \(\mathbf{1}\) from palladium acetate and diphenylacetylene in methanol (eq 1), it was noted that the ester, methyl benzoate, was always produced to some extent and it was suggested that its formation was due to the general-acid-catalyzed hydrolysis of the orthoester, \(\mathrm{PhC}(\mathrm{OMe})_{3}\). There is the possibility, however, that water can directly attack the intermediate 4 in Scheme I to yield " \(\mathrm{PhC}(\mathrm{OMe})(\mathrm{OH})_{2}\) " (where \(\mathrm{OR}=\mathrm{OMe}\) ), which will then spontaneously dehydrate to PhCOOMe . The use of \(1: 6\) by volume aqueous acetone as solvent in eq 4 in place of \(\mathrm{R}^{\prime} \mathrm{OH}\) leads directly to the formation of \(\mathbf{1}\) and PhCOOMe . Thus it appears that the ester, PhCOOMe , formed in the reaction of palladium acetate and diphenylacetylene (eq 1) can arise either by the hydrolysis of the orthoester, \(\mathrm{PhC}(\mathrm{OMe})_{3}\), or directly from the attack of a water molecule on the intermediate 4 in Scheme I.
(iv) Preparation of \(\left[\left(\mu-\mathrm{R}^{1} \mathrm{C} \equiv \mathrm{CR}^{2}\right)\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Ph}_{3} \mathrm{R}^{1} \mathrm{R}^{2} \mathrm{Pd}\right)_{2}\right]\). "endo- \(\mathrm{C}_{4} \mathrm{Ph}_{4} \mathrm{ORPdOAc}\) " has been reacted with a series of disubstituted acetylenes \(\mathrm{R}^{1} \mathrm{C} \equiv \mathrm{CR}^{2}\) in alcohol (eq 5). On the basis of the proposed mechanism, Scheme I, the introduction of a new acetylene, \(\mathrm{R}^{1} \mathrm{C} \equiv \mathrm{CR}^{2}\), at intermediate 2 (Scheme I) should lead to the formation of complexes \(\left[\left(\mu-\mathrm{R}^{1} \mathrm{C} \equiv \mathrm{CR}^{2}\right)\right.\) -\(\left.\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Ph}_{3} \mathrm{R}^{1} \mathrm{R}^{2} \mathrm{Pd}\right)_{2}\right]\) (11) structurally a nalogous to green compound 1 . For the series of alkyl and aryl disubstituted acetylenes listed for eq 5 , this was found to be the case. For example, see reaction 5 .


11
solvents to give an intense royal blue solution. The visible spectrum of this solution in chloroform is similar to that of \(\mathbf{1}\) with two strong absorptions at 598 and 374 nm . In \(\mathrm{CDCl}_{3}\) solution, the \({ }^{1} \mathrm{H}\) NMR spectrum of 11 (shown in Figure 2) clearly indicates the presence of two sets of ethyl resonances in a \(2: 1\) ratio assignable to the \(\eta^{5}-\mathrm{C}_{5} \mathrm{Ph}_{3} \mathrm{Et}_{2}\) and \(\mathrm{Et}_{2} \mathrm{C}_{2}\) ligands, respectively. The mass spectrum confirmed the presence of these ligands (see Table I). Elemental analysis and an osmometric molecular weight determination ( \(994 \mathrm{~g} / \mathrm{mol}\) calcd; \(916 \mathrm{~g} /\) mole found) are consistent with the formulation of 11a as \(\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Ph}_{3} \mathrm{Et}_{2}\right)_{2}\left(\mu-\mathrm{Et}_{2} \mathrm{C}_{2}\right) \mathrm{Pd}_{2}\right]\). Degradation of the complex 11 a with excess HCl leads to the isolation of \(\mathrm{C}_{5} \mathrm{Ph}_{3} \mathrm{Et}{ }_{2} \mathrm{H}\). Thus the product of eq 5 , where \(\mathrm{R}^{1}, \mathrm{R}^{2}=\mathrm{Et}\), is firmly established as \(\left[(\mu-\mathrm{EtC} \equiv \mathrm{CEt})\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Ph}_{3} \mathrm{Et}_{2} \mathrm{Pd}\right)_{2}\right]\) (11a). In addition, the reaction mixture contained 2 mol of \(\mathrm{PhC}(\mathrm{OMe})\left(\mathrm{OEt}_{2}\right.\) for each mole of 11 a produced. The analytical and spectroscopic data pertaining to the structural characterization of \(\mathbf{1 1 b} \mathbf{b}\) are given in Table I. The UV-visible spectrum of \(11 \mathrm{c}\left(\mathrm{R}^{1}=t-\mathrm{Bu}\right.\), \(\mathrm{R}^{2}=\mathrm{Me}\) ) contained an extra absorption at \(\sim 480 \mathrm{~nm}\) which was attributed to a decomposition product, since the green colored species was unstable in this instance and could not be isolated pure in the solid state. Attempts to extend this reaction (eq 5) to acetylenes with nonaryl or alkyl substituents did not yield complexes which were a nalogous to the green compound 1. Use of the acetylenes \(R^{1} C \equiv C R^{2}\), where \(R^{1}, R^{2}=H, S i M e_{3}\), \(\mathrm{CF}_{3}\), or \(\mathrm{CMe}_{2} \mathrm{OH}\), in eq 5 all led to decomposition. For \(\mathrm{R}_{1}, \mathrm{R}^{2}\) \(=\mathrm{SiMe}_{3}\), this decomposition is probably due to the sensitivity of the Si -acetylene bond in alcoholic media. \({ }^{28}\)
(v) Exchange of the Bridgine Acetylene in the Complexes, \(\left[\left(\mu-\mathbf{R}^{\mathbf{1}} \mathbf{C} \equiv \mathbf{C R}^{\mathbf{1}}\right)\left(\eta^{\mathbf{5}}-\mathbf{C}_{\mathbf{5}} \mathbf{P h}_{\mathbf{3}} \mathbf{R}^{\mathbf{1}} \mathbf{R}^{\mathbf{2}} \mathbf{P d}\right)_{\mathbf{2}}\right]\). The complexes \([(\mu-\) \(\left.\mathrm{RC} \equiv \mathrm{CR}) \mathrm{Co}_{2}(\mathrm{CO})_{6}\right]^{29}\) and \(\left[(\mu-\mathrm{RC} \equiv \mathrm{CR})\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}-\right.\right.\) \(\mathrm{Ni})_{2},{ }^{30,31}\) which are structural analogues of the complexes 1 and 11a-h undergo a relatively facile bridging acetylene exchange reaction. The order of displacement proved to be: \(\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{CCF}_{3} \gg \mathrm{MeOOCC} \equiv \mathrm{CCOOMe}>\mathrm{PhC} \equiv \mathrm{CPh}>\) \(\mathrm{PhC} \equiv \mathrm{CH}>\mathrm{HC} \equiv \mathrm{CH} \geq \mathrm{PhC} \equiv \mathrm{CMe}>\mathrm{MeC} \equiv \mathrm{CH}>\) \(\mathrm{MeC} \equiv \mathrm{CMe} .{ }^{31}\) The corresponding palladium complexes 11 do not undergo such a displacement reaction under mild conditions. Replacement of the bridging acetylene by a less volatile acetylene was achieved, however, by heating the system in alcohol under reduced pressure.
\[
\begin{aligned}
& {\left[\left(\mu-\mathrm{R}^{1} \mathrm{C} \equiv \mathrm{CR}^{2}\right)\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Ph}_{3} \mathrm{R}^{1} \mathrm{R}^{2} \mathrm{Pd}\right)_{2}\right]} \\
& +\mathrm{RC} \equiv \mathrm{CR} \xrightarrow{\mathrm{EtOH}} \mathrm{R}^{1} \mathrm{C} \equiv \mathrm{CR}^{2} \uparrow \\
& +\left[(\mu-\mathrm{RC} \equiv \mathrm{CR})\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Ph}_{3} \mathrm{R}^{1} \mathrm{R}^{2} \mathrm{Pd}\right)_{2}\right] \\
& 12
\end{aligned}
\]

Completion of the reaction was determined by the constancy of \(\lambda_{\text {max }}\) in the visible spectrum of the reaction mixture. Displacing the bridging acetylene from the complex [ \(\left(\mu-\mathrm{Et}_{2} \mathrm{C}_{2}\right)\) -
\[
\begin{equation*}
\text { "endo }-\mathrm{C}_{4} \mathrm{Ph}_{4} \mathrm{ORPdOAc} "+\mathrm{R}^{1} \mathrm{C} \equiv \mathrm{CR}^{2} \xrightarrow{\text { alcohol }} 2 \mathrm{PhC}(\mathrm{OR})_{3}+11 \tag{5}
\end{equation*}
\]
\begin{tabular}{cclclcccc} 
complex & \(\mathbf{1 1 a}\) & \(\mathbf{1 1 b}\) & \(\mathbf{1 1 c}\) & \(\mathbf{1 1 d}\) & \(\mathbf{1 1 e}\) & \(\mathbf{1 1 f}\) & \(\mathbf{1 1 g}\) & 11h \\
\(\mathrm{R}^{1}=\) & Et & Ph & tBu & Et & \(p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\) & \(p\)-tolyl & \(p\) - \(\mathrm{BrC}_{6} \mathrm{H}_{4}\) & Ph \\
\(\mathrm{R}^{2}=\) & Et & Me & Me & Me & \(p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\) & \(p\)-tolyl & \(p-\mathrm{BrC}_{6} \mathrm{H}_{4}\) & Naphth
\end{tabular}
\(\mathrm{EtC} \equiv \mathrm{CEt}\left(\mathrm{R}^{1}, \mathrm{R}^{2}=\mathrm{Et}\right)\) with "endo \(-\mathrm{C}_{4} \mathrm{Ph}_{4} \mathrm{OMePdOAc}\) " in EtOH results in the slow precipitation of 11a as purple prisms, mp \(175-177^{\circ} \mathrm{C}\), which dissolve readily in organic
\(\left.\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Ph}_{3} \mathrm{Et}_{2} \mathrm{Pd}\right)_{2}\right]\) (11a) by eq 6 with \(\mathrm{PhC} \equiv \mathrm{CPh}\) yields a new compound in which the \({ }^{1} \mathrm{H}\) NMR resonance of the bridging acetylene ethyl groups has disappeared, leaving the resonance
of the ring ethyl substituents unshifted and undiminished. During the bridging acetylene exchange reaction, the color of the reaction mixture changes visibly from blue green to green, corresponding to the difference in the visible spectra of reagent and product. The new green product can be isolated from this reaction, initially as a glass. Recrystallization from chloroform/methanol yielded green prisms with properties typical of the expected compound, \(\left[(\mu-\mathrm{PhC} \equiv \mathrm{CPh})\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Ph}_{3} \mathrm{Et}_{2} \mathrm{Pd}\right)_{2}\right]\) (12e) (see Table I). The complexes 12a-i were similarly prepared and characterized. In an attempt to establish the dependence of the color of the complexes on the nature of the bridging acetylene substituents, a series of complexes 12b-h


12b-h
was generated by the bridge displacement reaction. The reaction was monitored for completion by visible and \({ }^{1} \mathrm{H}\) NMR spectroscopy as outlined for eq 6 above. The \({ }^{1} \mathrm{H}\) NMR spectra shown in Figure 2 of the reagent and product of the reaction of 11 a with \(p, p^{\prime}-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Br}\) are consistent with the displacement of the bridging 3 -hexyne to yield the complex \(\left[\left(\mu-p, p^{\prime}-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Br}\right)\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Ph}_{3} \mathrm{Et}_{2} \mathrm{Pd}\right)_{2}\right](12 \mathrm{~g}) . \mathrm{In}\) all cases, the complexes \(\left[\left(\mu-p, p^{\prime}-\mathrm{XC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{X}\right)\left(\eta^{5}\right.\right.\). \(\left.\left.\mathrm{C}_{5} \mathrm{Ph}_{3} \mathrm{Et}_{2} \mathrm{Pd}\right)_{2}\right]\) (12) can be isolated as crystalline solids. From the visible spectra of the complexes summarized in Table I, it can be seen that both the high and low wavelength absorptions are shifted to longer wavelength with increased electron withdrawal by the bridging acetylene para substitutents, X . A plot of frequency vs. the Hammet constant \(\sigma_{p}\) gave a reasonably linear correlation for the high wavelength absorptions, but not with the lower wavelength absorption. Although a definite assignment of the electronic levels involved cannot be made, the green color of Allegra's \(\operatorname{Pd}(\mathrm{I})\) dimers \(\left[\left(\mu^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\right.\) \(\left.\mathrm{PdAlCl}_{3} \mathrm{X}\right]_{2}, \mathrm{X}=\mathrm{Cl}\) or \(\mathrm{AlCl}_{4}\), may indicate a similar visible spectrum in which case the electrons of the palladium(I)palladium(I) bond would be implicated for the longer wavelength absorption (i.e., perhaps a \(\operatorname{Pd}-\operatorname{Pd} \sigma \rightarrow \sigma^{*}\) transition).
(vi) The Synthesis of \(\operatorname{Bis}\left(\eta^{5}\right.\)-penta- \(p\)-tolylcyclopentadienyl)( \(\mu-\mathrm{RC} \equiv \mathrm{CR}\) )dipalladium(I) Complexes. Attempts to prepare \(\left[\left\{\eta^{5}(p \text {-tolyl })_{5} \mathrm{C}_{5}\right\}_{2}\left(\mu-p\right.\right.\)-tolyl \(\left.\left.{ }_{2} \mathrm{C}_{2}\right) \mathrm{Pd}_{2}\right]\) (13a) by the reaction of di-p-tolylacetylene with palladium acetate in methanol gave the required product 13a as a green precipitate in very low yield (ca. \(5 \%\) ). The overall yield of 13 a is increased to \(50 \%\) (based on Pd incorporation into the complex) by first preparing "(endo-methoxytetra-p-tolylcyclobutenyl)palladium acetate" which can then be reacted with various acetylenes to give cyclopentadienyl products, e.g., 13a,b (see Table I). The complexes \(13 a\) and \(b\) are considerably more soluble than those derived from diphenylacetylenes.
(vii) Preparation of the Complexes (endo- \(\eta^{3}\)-4-alkoxy-1,2,3,4-tetraphenylcyclobutenyl)( \(\boldsymbol{5}^{5}\)-dicarbomethoxytriphenylcyclopentadienyl)palladium(II). The reaction of aryl and alkyl disubstituted acetylenes with "endo- \(\mathrm{C}_{4} \mathrm{Ph}_{4} \mathrm{ORPdOAc}\) " in alcohol (eq 5) yields the complexes \(\left[\left(\mu-\mathrm{R}^{1} \mathrm{C} \equiv \mathrm{CR}^{2}\right)\left(\eta^{5}\right.\right.\) \(\left.\mathrm{C}_{5} \mathrm{Ph}_{3} \mathrm{R}^{1} \mathrm{R}^{2} \mathrm{Pd}\right)_{2}\) ] (11). The same reaction with \(\mathrm{MeOOCC} \equiv \mathrm{CCOOMe}\), however, leads to the formation of red needles, which by analysis and molecular weight characterize as \(\left[\left(\mathrm{C}_{4} \mathrm{Ph}_{4} \mathrm{OR}\right) \mathrm{Pd}\left\{\mathrm{C}_{5} \mathrm{Ph}_{3}(\mathrm{COOMe})_{2}\right\}\right], \mathrm{OR}=\mathrm{OMe}(14 \mathrm{a})\) or OEt (14b). The infrared of the carboxyl ester group in these compounds has frequencies ( \(\nu_{\mathrm{CO}}, 1730\) and \(1720 \mathrm{~cm}^{-1}\) for 14a and \(1720 \mathrm{~cm}^{-1}\) for \(\mathbf{1 4 b}\) ) consistent with uncoordinated carbomethoxy groups. The \(\mathrm{C}=\mathrm{O}\) stretching frequency expected of coordinated carbomethoxy \(\left(1638 \mathrm{~cm}^{-1}\right)^{24,32}\) is absent. The


Figure 3. \({ }^{1} \mathrm{H}\) NMR spectrum in \(\mathrm{CDCl}_{3}, 34^{\circ} \mathrm{C}\), of 14 b .
mass spectra of \(\mathbf{1 4 a}\) and \(\mathbf{b}\) contain major peaks for the ions \(\mathrm{C}_{5} \mathrm{Ph}_{3}(\mathrm{COOMe})_{2} \mathrm{H}^{+}\)and \(\left(\mathrm{C}_{4} \mathrm{Ph}_{4} \mathrm{OR}-\mathrm{H}\right)^{+}\)and closely resemble "endo- \(\mathrm{C}_{4} \mathrm{Ph}_{4} \mathrm{OR}\) " complexes in their fragmentation pattern (especially for the low mass fragments). The reaction of \(\mathbf{1 4 a}\) or \(\mathbf{b}\) with \(\mathrm{RC} \equiv \mathrm{CR}(\mathrm{R}=\) aryl, alkyl) in alcohol leads to the formation of green solution species. Since only endo-alkoxytetraphenylcyclobutenyl species have been found to react with acetylenes to give green compounds, the complexes 14a and \(b\) have been assigned the structure (endo- \(\eta^{3}-4\)-alkoxytetraphenylcyclobutenyl)( \(\eta^{5}\)-dicarbomethyoxytriphenylcyclopentadienyl) palladium(II) as shown with the \({ }^{1} \mathrm{H}\) NMR of \(\mathbf{1 4 b}\), in Figure 3. From the analysis of other products formed during the preparation of \(\mathbf{1 4 a - b}\) it was apparent that one ester or orthoester is produced for each dicarbomethoxytriphenylcyclopentadienyl ligand formed. It is possible that failure to form a complex structurally analogous to 11 may be due to the unsatisfactory bridging ability of this acetylene, MeOOCC \(\equiv\) CCOOMe (as was noted in the bridge displacement reactions). On the basis of earlier work a reasonable reaction equation for the preparation of 14 is eq 7)
```

2 "endo- $\mathrm{C}_{4} \mathrm{Ph}_{4} \mathrm{ORPdOAc} "+\mathrm{MeOOCC} \equiv \mathrm{CCOOMe}$
$2 \mathrm{R}^{1 \mathrm{OH}}$
$2 \mathrm{HOAc}+x \mathrm{PhCO}_{2} \mathrm{R}+(1-x) \mathrm{PhCO}_{2} \mathrm{R}^{1}+\mathrm{Pd}(0)$
$+\left(\right.$ endo $\left.-\mathrm{C}_{4} \mathrm{Ph}_{4} \mathrm{OR}\right){\mathrm{Pd}\left\{\mathrm{C}_{5} \mathrm{Ph}_{3}(\mathrm{COOMe})_{2}\right\}}$
and the yields shown in the Experimental Section have been determined on the basis of this stoichiometry.

Besides the products shown in eq 7 the reaction also produces a considerable amount of dicarbomethoxytriphenylcyclopentadiene. The formation of this compound may arise by the decomposition of $\mathbf{1 4 a - b}$ in the acidic reaction mixture and/or by protonation of $\mathrm{C}_{5} \mathrm{Ph}_{3}(\mathrm{COOMe})_{2}{ }^{-}$, which may be an intermediate in the formation of $\mathbf{1 4 a} \mathbf{- b}$. From the analysis of the reaction products, it appears that the hydrolysis reactions which produce the ester are very efficient in this instance. Even when the methanol solvent is specially dried, the yield of the orthoester $\mathrm{PhC}(\mathrm{OMe})_{2}(\mathrm{OEt})$ is small relative to the esters PhCOOEt and PhCOOMe . The presence of PhCOOMe can only be accounted for by the hydrolysis of the orthoester, but PhCOOEt can arise directly from the production of $\mathbf{1 4 a - b}$ as well, as discussed previously. Degradation of the complexes $\left[\left(\right.\right.$ endo $\left.-\mathrm{C}_{4} \mathrm{Ph}_{4} \mathrm{OR}\right){\left.\mathrm{Pd}\left\{\mathrm{C}_{5} \mathrm{Ph}_{3}(\mathrm{COOMe})_{3}\right\}\right] \text {, where } \mathrm{OR}=\mathrm{OMe}, ~}_{\text {(}}$ and OEt , in CDCl_{3} with HCl gave the products ROH , $\mathrm{C}_{5} \mathrm{Ph}_{3}(\mathrm{COOMe})_{2} \mathrm{H}$, and $\left[\left(\eta^{4}-\mathrm{C}_{4} \mathrm{Ph}_{4}\right) \mathrm{PdCl}_{2}\right]_{2}$ as reported by Maitlis ${ }^{33}$ for [(endo- $\left.\mathrm{C}_{4} \mathrm{Ph}_{4} \mathrm{OR}\right) \mathrm{PdC}_{5} \mathrm{H}_{5}$].
(viii) The Reactivity of $\left[\left(\eta^{5}-\mathrm{Ph}_{5} \mathrm{C}_{5}\right)_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{C}_{2}\right) \mathrm{Pd}_{2}\right]$. Complex $\mathbf{1}$ is quite inert to group 5 donor ligands such as $\mathrm{Ph}_{3} \mathrm{P}$, bpy, o-phen, diphos, or $(\mathrm{MeO})_{3} \mathrm{P}$. Refluxing 1 in neat pyridine for 5 h gave a brown reaction mixture from which pentaphenylcyclopentadiene could be isolated. Other reagents such as 2,5-norbornadiene, methylacetylene dicarboxylate, hexaflu-orobut-2-yne, carbon monoxide, and $\mathrm{Fe}(\mathrm{CO})_{5}$ failed to react with 1.

Complex 1 did react quite readily with nitric oxide in a CHCl_{3} solution

$$
\begin{gather*}
{\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Ar}_{3} \mathrm{R}^{1} \mathrm{R}^{2}\right)_{2}\left(\mu-\mathrm{R}^{1} \mathrm{R}^{2} \mathrm{C}_{2}\right) \mathrm{Pd}_{2}\right]+2 \mathrm{NO}} \\
\quad \rightarrow\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Ar}_{3} \mathrm{R}^{1} \mathrm{R}^{2}\right) \mathrm{PdNO}\right]+\mathrm{R}^{1} \mathrm{R}^{2} \mathrm{C}_{2} \tag{8}\\
\mathbf{1 5}
\end{gather*}
$$

15a, $\mathrm{Ar}=\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Ph} ; \nu_{\mathrm{NO}} 1775 \mathrm{~cm}^{-1}$
15b, $\mathrm{Ar}=\mathrm{R}^{1}=\mathrm{R}^{2}=p$-tolyl; $\nu_{\mathrm{NO}} 1756 \mathrm{~cm}^{-1}$
15c, $\mathrm{Ar}=\mathrm{Ph} ; \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Et} ; \nu_{\mathrm{NO}} 1755 \mathrm{~cm}^{-1}$
to yield the nitrosyl complex [$\left.\left(\eta^{5}-\mathrm{Ph}_{5} \mathrm{C}_{5}\right) \mathrm{PdNO}\right](15 a)$, iso lated as a diamagnetic, purple solid, and diphenylacetylene. Complex 15a exhibits $\nu_{\text {NO }}$ at $1775 \mathrm{~cm}^{-1}$ in excellent agreement with the value of $1789 \mathrm{~cm}^{-1}$ reported by Fisher for [$\left(\eta^{5}\right.$ $\mathrm{C}_{5} \mathrm{H}_{5}$) PdNO]. ${ }^{34,35}$ As previously noted in other studies of pentasubstituted cyclopentadiene complexes ${ }^{36,37}$ compound 15a is considerably more stable than its unsubstituted analogue, being indefinitely stable at room temperature under N_{2}. The unsubstituted analogue $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{PdNO}\right.$] is reported to be a red oil unstable at room temperature even under an atmosphere of argon. ${ }^{34.35}$ Similarly, reaction of 13a or 11a with nitric oxide gave $\mathbf{1 5 b}$ and $\mathbf{1 5 c}$, respectively. The complexes $\mathbf{1 5 a - c}$, while relatively stable in the solid, are unstable with respect to oxygen and moisture in solution.

The acids $\mathrm{HCl}, \mathrm{HBr}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HNO}_{3}$, and HOOCCF_{3} all cause the rapid destruction of the green compound 1 in solution with the color changing from green through purple to yellow. The stoichiometry of this reaction with the acids HCl and HBr was found to be different than that for other strong acids such as HOOCCF_{3}. Only a 1 molar equiv of HCl or HBr is required to destroy the green color ($\lambda_{668 \mathrm{~nm}}$) of a chloroform solution of $\mathbf{1}$ (or 13a) while 2 mol of $\mathrm{HOOCCF}_{3} / \mathrm{mol}$ of 1 are required to affect the disappearance of the absorption at 668 nm . In the HCl reaction, the solution turns purple due to an absorption at 560 nm which maximizes at a ratio of $1: 1$ and disappears at a ratio of $\mathrm{HCl} / 1$ of $2: 1$ to yield a deep yellow solution. From this latter solution the palladium(II) dinuclear complex $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Ph}_{5}\right)_{2} \mathrm{Pd}_{2} \mathrm{Cl}_{2}\right]$ (17a) can be readily isolated (as a yellow brown crystalline solid in nearly quantitative yield) and structurally characterized (see Scheme IV). 17b and $\mathbf{1 7 c}$ were

Scheme IV

prepared similarly. The hfac derivative 18 and the phosphine complex 19 were readily obtained from 17 a as shown in Scheme IV. When dry HCl in CHCl_{3} or $\mathrm{C}_{6} \mathrm{H}_{6}$ was added to an equimolar solution of green compound $\mathbf{1}$ on a reaction scale, a purple precipitate was formed which analyzed as [$\left(\eta^{5}-\right.$ $\mathrm{C}_{5} \mathrm{Ph}_{5}$) $2_{2} \mathrm{Pd}_{2} \mathrm{HCl}$] (16a) on the basis of its C and H content (but seemed to have an erratic Cl content) mass spectrum and molecular weight (see Table II). The visible spectrum of the precipitate had a major band at $560 \mathrm{~nm}\left(\epsilon_{\mathrm{M}} \sim 7000 \mathrm{M}^{-1}\right.$ cm^{-1}). Diphenylacetylene was also isolated from the reaction. A similar reaction of 1 with HBr gave 16b, and reaction of 13a with HCl gave $\mathbf{1 6 c}$. While the stoichiometry of the reactions outlined in Scheme IV are reasonably defined the formulation of $\mathbf{1 6 a - c}$ as bridging hydrido species is tentative as all attempts to locate a high-field resonance in their ${ }^{1} \mathrm{H}$ NMR spectra have
failed. However, in a recent communication, Green et al. ${ }^{38}$ have structurally characterized [$\left(\mathrm{Cy}_{3} \mathrm{P}_{2} \mathrm{Pt}_{2}\left(\mathrm{SiEt}_{3}\right)_{2}(\mu-\mathrm{H})\right]$, although no hydrido resonance in the ${ }^{1} \mathrm{H}$ NMR of this and related μ-hydrido complexes were observed. The proposed structures 16a-c receive further support from the existence of structurally well-defined analogues $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{M}_{2}(\mu-\mathrm{H}) \mathrm{Cl}_{3}\right]$ where $\mathrm{M}=\mathrm{Rh}$ or $\mathrm{Ir} .{ }^{39}$ The rhodium complex is also purple. The complexes 16a-c decomposed slowly in hexane solution, depositing elemental palladium in $24-36 \mathrm{~h}$ at room temperature. ${ }^{40}$

Attempts to synthesize analogues to 16a-c starting from $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Ph}_{4} \mathrm{Me}\right)_{2}(\mu-\mathrm{PhC} \equiv \mathrm{CMe}) \mathrm{Pd}_{2}\right]$ or from $\left[\left(\eta^{5}-\mathrm{C}_{5}\right.\right.$ $\left.\mathrm{Ph}_{3} \mathrm{Et}_{2}\right)_{2}(\mu-\mathrm{EtC} \equiv \mathrm{CEt}) \mathrm{Pd}_{2}$] gave purple solution species of only transient stability.

Experimental Section

${ }^{1} \mathrm{H}$ NMR spectra were recorded on Varian Associates Model A56/60D or T60 spectrometers. UV-visible spectra were recorded on a Unican SP 800 . Mass spectra were recorded on a Bell and Howell Model 21-490 spectrometer at an ionization energy of 70 eV . Molecular weights were measured using a Mechrolab Model 301A vapor pressure osmometer. Melting points were determined on a Kofler hot stage and are corrected.

The di- μ-chlorobis(endo- η^{3}-4-alkoxy-1,2,3,4-tetraphenylcyclobutenyl)dipalladium(II) complexes, where alkoxy is methoxy or ethoxy, were prepared as described by Maitlis et al. ${ }^{27}$

The orthoester, $\mathrm{PhC}(\mathrm{OMe})_{3}$, was identified by a comparison of its physical and spectral properties with an authentic sample. ${ }^{41}$ The other orthoesters, $\mathrm{PhC}(\mathrm{OMe})_{3-x}(\mathrm{OEt})_{x}, x=1,2,3$, were identified by their ${ }^{1} \mathrm{H}$ NMR spectra and by their mass spectral fragmentation patterns, which were consistent with that found for $\mathrm{PhC}(\mathrm{OMe})_{3}$. In all cases, the highest m / e peak did not correspond to the parent ion, but to the ion $\mathrm{PhC}(\mathrm{OR})\left(\mathrm{OR}^{1}\right)^{+}$, which presumably arises from the orthoester by the loss of an alkoxy group.

Complex 1: μ-Diphenylacetylene- $\operatorname{bis}\left(\eta^{5}\right.$-pentaphenylcyclopentadienyl)dipalladium(I), Diphenylacetylene (18.5 g) was added to a suspension of diacetatopalladium(11) (11.0 g) in methanol (175 mL). The mixture was stirred at room temperature for 24 h . The resultant green precipitate was filtered, washed with methanol, and air dried. Chromatography using a benzene eluate on an alumina column gave the required product as dark green prisms (from benzene/hexane), yield 10.2 g .

Stoichiometry of the Preparation of Complex 1. Palladium acetate $\left(0.999 \mathrm{~g}, 4.46 \times 10^{-3} \mathrm{~mol}\right)$ and diphenylacetylene $(2.784 \mathrm{~g}, 1.56 \times$ $10^{-2} \mathrm{~mol}$) were stirred together for 4 h in methanol which had been freshly distilled off magnesium methoxide. ${ }^{42}$ The green precipitate $(1.57 \mathrm{~g})$ was collected by filtration and washed with methanol. The filtrate and washings were evaporated to dryness under reduced pressure. The residual oil was dissolved in exactly 5 mL of CDCl_{3} and an aliquot was taken for ${ }^{1} \mathrm{H}$ NMR. Integration against a known concentration of added $\mathrm{Me}_{2} \mathrm{C}=\mathrm{CMe}_{2}$ gave a combined yield of 1.66 $\times 10^{-3} \mathrm{~mol}$ of PhCOOMe and $\mathrm{PhC}(\mathrm{OMe})_{3}$. The concentration of complex 1 in the green precipitate, isolated above, was 8.61×10^{-4} mol on the basis of $\lambda_{\max } 668 \mathrm{~nm}, \epsilon_{\mathrm{M}} 30200 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ in CHCl_{3}.

Reaction of 1 with excess HCl . Reaction of 1 with excess HCl in chloroform gave a reddish yellow solution from which elemental palladium was removed by columning the solution through alumina. The eluate was isolated by evaporation and extracted with a hot hexane/EtOH (4:1) mixture to give a pale yellow solution from which impure pentaphenylcyclopentadiene was recovered as a pale yellow solid. Sublimation [$194^{\circ} \mathrm{C}(0.05 \mathrm{mmHg})$] gave colorless needles which sublimed at $242-245^{\circ} \mathrm{C}$. The sublimed prismatic needles so obtained melted sharply at $256-259^{\circ} \mathrm{C}$ (lit. mp $244-246^{\circ} \mathrm{C}$)..43 Anal. Calcd for $\mathrm{C}_{5} \mathrm{Ph}_{5} \mathrm{H}: \mathrm{C}, 94.17$; $\mathrm{H}, 5.83$. Found: $\mathrm{C}, 94.19$; H, 5.86. Molecular weight, osmometrically in $\mathrm{CHCl}_{3}, 435 \mathrm{~g} / \mathrm{mol}$. Calcd for $\mathrm{C}_{5} \mathrm{Ph}_{5} \mathrm{H} ; 446 \mathrm{~g} / \mathrm{mol}$. The mass spectrum consisted of the fragmentation pattern for the ion $\mathrm{C}_{5} \mathrm{Ph}_{5} \mathrm{H}^{+}, m / e 446$, and the ${ }^{1} \mathrm{H}$ NMR in CDCl_{3} had the resonances $\delta 5.05$ (1, ring proton) and 6.8-7.2 (25 phenyl protons).

Preparation of "endo $-\mathrm{C}_{4} \mathrm{Ph}_{4} \mathrm{OMePdO}_{2} \mathrm{CCH}_{3}$ ", complex $10 \rightleftharpoons \mathbf{2 a}$. Di- μ-chloro-bis(endo- η^{3}-4-methoxy-1,2,3,4-tetraphenylcyclobutenyl) dipalladium(11) $(0.551 \mathrm{~g})$ and silver acetate $(0.174 \mathrm{~g})$ were stirred in dichloromethane (30 mL) for 3.5 h . Silver chloride ($0.146 \mathrm{~g}, 97 \%$ yield) was separated by filtration. The filtrate was evaporated down
to an orange solid, which was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexanes to give "endo- $\mathrm{C}_{4} \mathrm{Ph}_{4} \mathrm{OMePdOOCCH}_{3}$ ", $(0.27 \mathrm{~g}, 47 \%$ yield $)$. The molecular weight (osmometrically in $\mathrm{CHCl}_{3}, 37^{\circ} \mathrm{C}$): found, 762 $\mathrm{g} / \mathrm{mol}$; calcd, $552 \mathrm{~g} / \mathrm{mol} .{ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3} at $34^{\circ} \mathrm{C}$: integration of methoxy to acetate resonances is $1: 1$, but the spectrum is temperature dependent and too complex to assign to structures.

Preparation of $\mathbf{1}$ from $\mathbf{1 0} \rightleftharpoons \mathbf{2 a}$. Di- μ-chloro-bis(endo- $\eta^{3}-4$-meth-oxy-1,2,3,4-tetraphenylcyclobutenyl)dipalladium(11) ($0.388 \mathrm{~g}, 3.66$ $\times 10^{-4} \mathrm{~mol}$) and silver acetate (0.122 g) were stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 2 h . The precipitated silver chloride ($0.099 \mathrm{~g}, 95 \%$) was removed by filtration and the filtrate was evaporated to an orange solid which was redissolved in methanol (20 mL) with diphenylacetylene (0.088 g). After 24 h , the green precipitate was collected. The yield of 1 by visible spectroscopy was $1.65 \times 10^{-4} \mathrm{~mol}(68 \%$ yield based on three reagent moles for 2 mol product). The yield of $\mathrm{PhCOOMe}+\mathrm{PhC}(\mathrm{OMe})_{3}$ based on the integration of the ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction mixture against a known quantity of $\mathrm{Me}_{2} \mathrm{C}=\mathrm{CMe}_{2}$ was 3.22×10^{-4} mol.

Preparation of complexes $11,\left[\left(\mu-\mathbf{R}^{1} \mathrm{C} \equiv \mathbf{C R}^{2}\right)\left(\eta^{5}-\mathrm{Ph}_{3} \mathbf{R}^{1} \mathbf{R}^{2} \mathrm{C}_{5}\right)_{2} \mathbf{P d}_{2}\right]$: e.g., μ-Hex-3-yne-bis(η^{5}-diethyltriphenylcyclopentadienyl)dipalladium(I) (11a). Di- μ-chloro-bis(endo- $\eta^{3}-4$-methoxy-1,2,3,4-tetraphenylcyclobutenyl)dipalladium(11) $\left(0.393 \mathrm{~g}, 3.66 \times 10^{-4} \mathrm{~mol}\right)$ and silver acetate $(0.126 \mathrm{~g})$ were stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ for 2.5 h . The silver chloride precipitate was removed by filtration and the solution evaporated down to an orange glass, which was taken up in warm ethanol $(30 \mathrm{~mL})$ and filtered. 3-Hexyne (0.999 g) was added to the filtrate. On standing overnight purple prisms of $11 a(30 \%$ yield) formed in the deep blue solution along with some elemental palladium. The orthoester isolated from this reaction was $\mathrm{PhC}(\mathrm{OMe})(\mathrm{OEt})_{2}$.

Degradation of 11 a in chloroform solution with excess gaseous HCl caused a rapid change in color from blue to yellow brown. The solution was columned through alumina and evaporated to dryness. The pale yellow residue gave a parent ion in the mass spectrum corresponding to $\mathrm{C}_{5} \mathrm{Ph}_{3} \mathrm{Et}_{2} \mathrm{H}^{+}(\mathrm{m} / \mathrm{e}, 350)$. The ${ }^{1} \mathrm{H}$ NMR spectrum of this solid in CDCl_{3} consisted of: Ar, $\delta \sim 6.8-7.4 ; \mathrm{H}, \delta \sim 4.37$; and Et protons $\delta \sim$ $0.7-2.7$ in the ratio expected for $\mathrm{C}_{5} \mathrm{Ph}_{3} \mathrm{Et}_{2} \mathrm{H}$. The complexity of the resonances suggests that various isomers of diethyltriphenylcyclopentadiene are present.
μ-Phenylmethylacetylene-bis $\left(\eta^{5}\right.$-methyltetraphenylcyclopentadienyl)dipalladium(I) (11b), Di- μ-chloro-bis(endo- η^{3}-4-ethoxy-1,2,3,4-tetraphenylcyclobutenyl)dipalladium(11) (0.817 g) and silver acetate $(0.258 \mathrm{~g})$ were stirred for 2 h in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$. The silver chloride precipitate was filtered off and the filtrate evaporated to a yellow solid, which was taken up in dry methanol and filtered. Phenylmethylacetylene (0.258 g) was added to the filtrate (22 mL), which precipitated 11 b as a purple solid from a bluish green solution after 24 h (yield, $0.413 \mathrm{~g} ; 75 \%$). The mother liquor contained PhC $(\mathrm{OEt})(\mathrm{OMe})_{2}$. Degradation of 11 b with excess HCl in chloroform resulted in a yellow reaction mixture. The mixture was columned through alumina and the solvenl evaporated off to leave an off-white solid. Recrystallization gave $\mathrm{C}_{5} \mathrm{Ph}_{4} \mathrm{MeH}$ as a white solid, mp 171-174 ${ }^{\circ} \mathrm{C}$. The parent peak in the mass spectrum was $\mathrm{C}_{5} \mathrm{Ph}_{4} \mathrm{MeH}{ }^{+}(m / e$ 384). The molecular weight (osmometrically in chloroform at $37^{\circ} \mathrm{C}$) was $389 \mathrm{~g} / \mathrm{mol}$ (compared to $384 \mathrm{~g} / \mathrm{mol}$ required for $\mathrm{C}_{5} \mathrm{Ph}_{4} \mathrm{MeH}$) ${ }^{1} \mathrm{H} \mathrm{NMR}$ in CDCl_{3} indicates the presence of at least two isomers of methyltetraphenylcyclopentadiene. The complexes $11 \mathrm{c}-\mathrm{h}$ were prepared in analogous fashion to $\mathbf{1 1 b}$.

Bridge Displacement Reactions: the Preparation of the Complexes $\left[\left(\mu-\mathbf{R}^{3} \mathbf{C} \equiv \mathbf{C R}^{4}\right)\left(\eta^{5}-\mathbf{P h}_{3} \mathbf{R}^{1} \mathbf{R}^{2} \mathrm{C}_{5}\right)_{2} \mathbf{P d}_{\mathbf{2}}\right]$. The bridging acetylene can be displaced from the complexes 11 by a less volatile acetylene $R C \equiv C R$ in hot ethanol under reduced pressure. Thus $\mu-\mathrm{PhC} \equiv \mathrm{CMe}$ in 11b has been displaced by $\mathrm{PhC} \equiv \mathrm{CPh}$, and $\mu-\mathrm{EtC} \equiv \mathrm{CEt}$ in 11a has been displaced by $\mathrm{PhC} \equiv \mathrm{CPh}, \mathrm{PhC} \equiv \mathrm{CMe}, p, p^{\prime}-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{OMe}$, $p, p^{\prime}-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}, \quad p, p^{\prime}-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{~F}, \quad p, p^{\prime}-$ $\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Cl}$, $p, p^{\prime}-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Br}$, and $p, p^{\prime}-$ $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$. One example of the procedure follows. μ-Diphenylacetylene-bis (η^{5}-diethyltriphenylcyclopentadienyl)dipalladium(I). Diphenylacetylene (0.328 g) and μ-diethylacetylene-$\operatorname{bis}\left(\eta^{5}\right.$-diethyltriphenylcyclopentadienyl) dipalladium(1) (0,177 g) were dissolved in 1:I dry methanol/dichloromethane to give a blue solution (10 mL). The mixture was evaporated almost to dryness on the steam bath under reduced pressure. The solvent was replaced with ethanol/chloroform (10 mL) and evaporated to dryness at $\sim 80^{\circ} \mathrm{C}$ under reduced pressure. A ${ }^{1} \mathrm{H} N \mathrm{NR}$ of the blue-green residue in CDCl_{3} indicated the total removal of the bridging acetylene ethyl resonances. The solid was columned as a benzene solution through

Florisil and recrystallized from chloroform/methanol to give 12 e as green prisms (40% yield).

Preparation of endo- η^{3}-4-methoxy-1,2,3,4-tetraphenylcyclo-butenyl- η^{5}-dicarbomethoxytriphenylcyclopentadienylpalladium(II), complex 14a. Di- μ-chloro-bis(endo- $\eta^{3}-4$-methoxy-1,2,3,4-tetraphenylcyclobutenyl) dipalladium(II) (0.286 g) and silver acetate (0.097 g) were stirred for 4 h in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The silver chloride was filtered off and the filtrate evaporated to a yellow solid which was redissolved in warm methanol (30 mL) and filtered. Dimethylacetylene dicarboxylate, $\mathrm{MeOOCC} \equiv \mathrm{CCOOMe}(0.10 \mathrm{~g})$, was added to the filtrate which on standing overnight yielded $\mathbf{1 4 a}$ as red prisms in 56% yield.
endo- η^{3}-4-Ethoxy-1,2,3,4-tetraphenylcyclobutenyl- η^{5}-dicarbomethoxytriphenylcyclopentadienylpalladium(II), complex 14b. This complex was prepared from di- μ-chloro-bis(endo- η^{3}-4-ethoxy-1,2,3,4-tetraphenylcyclobutenyl)dipalladium(II) as described above for the methoxy complex except that the solvent used was ethanol in this case. The product was isolated as red prisms (27% yield). The reaction mixture in this case was found to contain $\left[\mathrm{C}_{5} \mathrm{Ph}_{3}(\mathrm{COO}\right.$ $\mathrm{Me}_{2} \mathrm{H}$] in $4 \mathrm{l} \%$ yield.
Determination of Yields for the Preparation of [(endo- η^{3} $\left.\left.\mathrm{C}_{4} \mathrm{Ph}_{4} \mathrm{OMe}\right) \mathbf{P d}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Ph}_{3}(\mathrm{COOMe})_{2}\right)\right]$. Di- μ-chloro-bis(endo-η^{3}-4-methoxy-I,2,3,4-tetraphenylcyclobutenyl)dipalladium(II) (0.383 g) and silver acetate (0.117 g) were stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 5 h then filtered and evaporated to dryness. The residue was dissolved in $d r y$ methanol, filtered, and MeOOCC $\equiv C C O O M e(0.121 \mathrm{~g})$ added to the filtrate. After 24 h red needles of $\left[\left(e n d o-\eta^{3}-\mathrm{C}_{4} \mathrm{Ph}_{4} \mathrm{OMe}\right) \mathrm{P}\right.$ -$\left.\mathrm{d}\left\{\eta^{5}-\mathrm{C}_{5} \mathrm{Ph}_{3}(\mathrm{COOMe})_{2}\right\}\right]$ were isolated (0.154 g). The methanol insoluble residue not involved in reaction with $\mathrm{MeOOCC} \equiv \mathrm{CCOOMe}$ was reacted with HCl in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution to yield the (η^{4}-tetraphenylcyclobutadiene) palladium chloride, $\left[\left(\eta^{4}-\mathrm{C}_{4} \mathrm{Ph}_{4}\right) \mathrm{PdCl}_{2}\right]_{2}$, as a red solid (0.107 g). This enabled the computation of the amount of "endo- $\mathrm{C}_{4} \mathrm{Ph}_{4} \mathrm{OMePdOAc}$ " actually involved in the reaction with $\mathrm{MeOOCC} \equiv \mathrm{CCOOMe}$. The yield of $\left[\left(\right.\right.$ end $\left.0-\eta^{3}-\mathrm{C}_{4} \mathrm{Ph}_{4} \mathrm{OMe}\right)$ -$\left.\mathrm{Pd}\left\{\eta^{5}-\mathrm{C}_{5} \mathrm{Ph}_{3}(\mathrm{COOMe})_{2}\right\}\right]$ on this basis was 66.7%.

The mother liquor from this reaction was inspected by ${ }^{1} \mathrm{H}$ NMR spectroscopy and found to contain $\mathrm{C}_{5} \mathrm{Ph}_{3}(\mathrm{COOMe})_{2} \mathrm{H}(22.3 \%$ yield). The total cyclopentadienyl ring formation was $66.7+22.3=89 \%$. The total yield of $\mathrm{PhC}(\mathrm{OMe})_{2}(\mathrm{OEt})+\mathrm{PhCOOMe}+\mathrm{PhCOOEt}$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy was 93.5%, which gives I mol of esters formed per $\mathrm{C}_{5} \mathrm{Ph}_{3}(\mathrm{COOMe})_{2}{ }^{-}$ring.

Degradation of $\left[\left(\right.\right.$ endo $\left.\left.-\eta^{3}-\mathrm{C}_{4} \mathrm{Ph}_{4} \mathrm{OMe}\right) \mathrm{Pd}\left\{\eta^{5}-\mathrm{C}_{5} \mathrm{Ph}_{3}(\mathrm{COOMe})_{2}\right\}\right]$. $\left[\left(e n d o-\eta^{3}-\mathrm{C}_{4} \mathrm{Ph}_{4} \mathrm{OMe}\right) \mathrm{Pd}\left\{\eta^{5}-\mathrm{C}_{5} \mathrm{Ph}_{3}(\mathrm{COOMe})_{2}\right\}\right](0.106 \mathrm{~g})$ in CDCl_{3} ($1.5, \mathrm{~mL}$) had HCl bubbled through it for 5 min . Both $\mathrm{C}_{5} \mathrm{Ph}_{3}(\mathrm{COOMe})_{2} \mathrm{H}$ and MeOH were evident by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The sample was centrifuged and filtered to remove the orange precipitate formed $(0.037 \mathrm{~g})$. The filtrate was evaporated to dryness to yield a pale orange residue, which was extracted with hot hexanes to leave more orange precipitate (0.016 g). The hexane extractions yielded a white solid, mp $152-160^{\circ} \mathrm{C}$, in 90% vield based on $\mathrm{C}_{5} \mathrm{Ph}_{3}\left(\mathrm{COOMe}_{2} \mathrm{H}\right.$. Mol wt required, $410 \mathrm{~g} / \mathrm{mo}^{\prime}$; found, mol wt (osmometrically in $\mathrm{CHCl}_{3}, 37^{\circ} \mathrm{C}$) $481 \mathrm{~g} / \mathrm{mol}$; mass spectrum, m / e 410. ${ }^{1} \mathrm{H}$ NMR spectrum: Ar protons, broad resonance at $\sim 7.15 \mathrm{ppm}$; COOMe protons, singlets at 3.63 and 3.56 ppm in a $1: 1$ ratio; and ring H a singlet at 5.07 ppm . The orange solid, $\mathrm{mp} 295-300^{\circ} \mathrm{C}(0.054 \mathrm{~g}$, 91.8%. yield), was identified as di- μ-chlorodichloro-bis(η^{4}-tetraphenylcyclobutadiene)dipalladium(11), by its physical properties and reactivity with methand to yield di- μ-chloro-bis(exo- $\eta^{3}-4$-meth-oxy-I, 2,3,4-tetraphenylcychobutenyl)dipalladium(11). ${ }^{44}$

Degradation of the ethoxy analogue $\left[\left(\right.\right.$ endo $\left.-\mathrm{C}_{4} \mathrm{Ph}_{4} \mathrm{OEt}\right) \mathrm{Pd}\left\{\eta^{5}\right.$. $\left.\mathrm{C}_{5} \mathrm{Ph}_{3}(\mathrm{COOMe})_{2}\right\}$ by the same procedure gave analogous results.

Reaction of \boldsymbol{l} with. Nitric Oxide: the Preparation of η^{5}-Pentaphenylcyclopentadienylnitrosylpalladium(I) (15a), Nitrogen was bubbled through a stirred chloroform solution (50 mL) of $1(2.22 \times$ $10^{-4} \mathrm{~mol}$) for 15 min . Then nitric oxide was bubbled through the solution until the color had changed from green to magenta. The excess nitric oxide was removed from solution by bubbling nitrogen through it. Evaporation of the solvent left a purple solid residue, which was extracted with hot hexanes under nitrogen to remove diphenylacetylene. The residual purple solid ($0.10 \mathrm{~g}, 40 \%$ yield) was assigned the formula $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Ph}_{5}\right) \mathrm{PdNO}\right]$. It was soluble in organic solvents, insoluble in water, and of limited solubility in methanol. Complexes $\mathbf{1 5 b}$ and 15 c were prepared in a similar manner.
μ-Chloro- μ-hydrido-bis(η^{5}-pentaphenylcyclopentadienyl)dipalla$\operatorname{dium}(\mathrm{II})$ (16a). A solution of dry HCl in chloroform (1.6 mL of 0.269 M) was added to a stirred solution of μ-diphenylacetylene-bis $\left(\eta^{5}\right.$ -
pentaphenylcyclopentadienyl)dipalladium(1) (4.29 $\left.\times 10^{-4} \mathrm{~mol}\right)$ in A.C.S. chloroform (0.75% ethanol added; 99 mL). The solution turned purple and on reducing the volume $\mathbf{1 6 a}$ was precipitated as a purple solid (58%). Evaporation of the mother liquor to dryness followed by hexane extraction of the residue yielded diphenylacetylene ($>90 \%$). Complexes $\mathbf{1 6 b}$ and $\mathbf{1 6 c}$ were prepared similarly.

Di- μ-chloro-bis $\left(\eta^{5}\right.$-pentaphenylcyclopentadienyl)dipalladium(II) (17a). To a solution of complex $1(0.976 \mathrm{~g})$ in chloroform (50 mL) was added 4.6 mL of a chloroform solution of $\mathrm{HCl}(0.34 \mathrm{M})$. The reaction was stirred for 30 min . the solution reduced in volume to $10 \mathrm{~mL}, n$ pentane (70 mL) added, and the solution cooled to $0^{\circ} \mathrm{C}$. The complex 17a precipitate from the solution as a brown solid ($0.761 \mathrm{~g} ; 85 \%$). The complexes $\mathbf{1 7 b}$ and 17 c were prepared similarly.
The reaction of 17 a with an equimolar quantity of $\mathrm{Tl}(\mathrm{hfac})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave complex 18 as an orange glass (80% yield).

Acknowledgment. We thank the National Research Council of Canada for financial support of this work.

References and Notes

(1) P. M. Maitlis, Acc. Chem. Res., 9, 93 (1976).
(2) P. M. Maitlis, "The Organic Chemistry of Palladium", Vol. 2, Academic Press, New York, N.Y., 1971, pp 47-58.
(3) E. Ban, P.-T. Cheng, T. Jack, S. C. Nyburg, and J. Powell, J. Chem. Soc., Chem. Commun., 368 (1973)
(4) G. Allegra, G. T. Casagrande, A. Immirzi, L. Porri, and G. Vitalli, J. Am. Chem. Soc., 92, 289 (1970).
(5) G. Allegra, A. Immirzi, and L. Porri, J. Am. Chem. Soc., 87, 1394 (1965).
(6) Y. Koboyashi, Y. litaka, and H. Yamazaki, Acta Crystallogr., Sect. B, 28, 899 (1972)
(7) H. Werner, D. Tune, G. Parker, C. Krüger, and D. J. Brauer, Angew, Chem., Int. Ed. Engl., 14, 185 (1975).
(8) J. M. Davidson, Chem. Commun., 1019 (1971)
(9) F. Klanberg and E. L. Muetterties, J. Am. Chem. Soc., 90, 3296 (1968).
(10) S. Otsuka, Y. Tatsuno, and K. Ataka, J. Am. Chem. Soc., 93, 6705 (1971).
(11) D. J. Doonan, A. L. Balch, S. Z. Goldberg, R. Eisenberg, and J. S. Miller, J. Am. Chem. Soc., 97, 1961 (1975).
12) M. F. Rettig, E. A. Kirk, and P. M. Maitlis, J. Organomet. Chem., 111, 113 (1976).
(13) O. S. Mills and B. W. Shaw, J. Organomet. Chem., 11, 595 (1968).
(14) K. K. Cheung, R. J. Cross, K. P. Forrest, R. Wardle, and M. Mercer, J. Chem Soc. D., 875 (1971)
(15) "Handbook of Chemistry and Physics", 47th ed, Chemical Rubber Publishing

Co., Cleveland, Ohio, 1966-1967.
(16) M. Kh. Minasyants and Yu. T. Struchkov, Zh. Strukt. Khim., 9, 481 (1968).
(17) T. A. Stephenson, S. M. Morehouse, A. R. Powell, J. P. Heffer, and G. Wikinson, J. Chem. Soc., 3632 (1965).
(18) H. Fugita, R. Endo, K. Murayana, and T. Ichii, Bull. Chem. Soc. Jpn., 45, 158 (1972).
(19) A. B. P. Lever and F. L. Bowden, Organomet. Chem. Rev., 3, 227 (1968).
(20) P. V. Balakrishnan and P. M. Maitlis, Chem. Commun., 1303 (1968)
(21) P. V. Balakrishnan and P. M. Maitlis, J. Chem. Soc. A, 1715 (1971).
(22) P.-T. Cheng, T. R., Jack, C. J. May, S. C. Nyburg, and J. Powell, J. Chem. Soc., Chem. Commun.، 369 (1975).
(23) T. Hosokawa, C. Calvo, H. B. Lee, and P. M. Maitlis, J. Am. Chem. Soc., 95, 4914 (1973).
(24) D. M. Roe, C. Calvo, N. Krishnamachari, K. Mosely, and P. M, Maitlis, J. Chem. Soc. D, 436 (1973).
(25) L. Malatesta, G. Santarella, L. M. Vallarino, and F. Zingales, Angew. Chem., 72, 34 (1960).
(26) L. M. Vallerino and G. Santarella, Gazz. Chim. Ital., 94, 252 (1964).
(27) A. T. Blomquist and P. M. Maitlis, J. Am. Chem. Soc., 84, 2329 (1962).
(28) R. S. Dickson and H. P. Kirsch, Aust. J. Chem., 25, 1815 (1972), and references cited therein.
(29) J. L. Davidson, R. Herak, L. Manojloric-Muir, K. W. Muir, and D. W. A. Sharp, J. Chem. Soc. D, 865 (1973)
(30) P. L. Stanghellini, R. Rossetti, O. Gambino, and G. Cetini, Inorg. Chim. Acta, 7, 445 (1973).
(31) E. W. Randall, E. Rosenberg, L. Milone, R. Rossetti, and P. L. Stanghellini, J. Organomet. Chem., 64, 271 (1974).
(32) K. Moseley and P. M. Maitlis, J. Chem. Soc. A, 169 (1974).
(33) P. M. Maitlis, A. Efraty, and M. L. Games, J. Am. Chem. Soc., 87, 719 (1965).
(34) E. O. Fisher and A. Volger, Z. Naturforsch. B, 18, 771 (1963).
(35) E. O. Fisher and H. Schuster-Woldan, Z. Naturforsch. B, 19, 766 (1964).
(36) R. B. King and A. Efraty, J. Am. Chem. Soc., 94, 3773 (1972).
(37) R. B. King and M. B. Bisnette, J. Organomet. Chem., 8, 287 (1967).
(38) M. Green, J. A. K. Howard, J. Proud, J. L. Spencer, F. G. A. Stone, and C A. Tsipis, J. Chem. Soc., Chem. Commun., 671 (1976)
(39) C. White, D. S. Gill, J. W. Kang, H. Blee, and P. M. Maitlis, J. Chem. Soc. D, 734 (1971).
(40) Maitlis et al. ${ }^{39}$ have reported $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Rh}_{2} \mathrm{Cl}_{3} \mathrm{H}\right]$ to be a very active catalyst for the hydrogenation of a variety of olefins at 1 atm H_{2} in the presence of triethylamine. The complexes 16a-c are likewise good catalysts for the hydrogenation of olefins under ambient conditions. Full details of their catalytic properties will be reported elsewhere.
(41) S. M. McElvain and J. T. Venerable, J. Am. Chem. Soc., 72, 1661 (1950).
(42) A. I. Vogel, "Practical Organic Chemistry", 3rd ed, Longmans, London, 1962, p 169.
(43) K. Ziegler and B. Schnell, Justus Liebigs Ann. Chem., 445, 266 (1925).
(44) P. M. Maitlis, A. Efraty, and M. L. Games, J. Am. Chem. Soc., 87, 719 (1965).

Reduction Studies on Mixed Chelate Complexes

Robert J. Balahura* and Nita A. Lewis
Contribution from the Department of Chemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1. Received November 19, 1976

Abstract: The Cr^{2+} reductions of the complexes $\left[\mathrm{Co}(\mathrm{en})(\mathrm{ptdn})_{2}\right]^{+},\left[\mathrm{Co}(\mathrm{en})_{2}(\mathrm{ptdn})\right]^{2+}$, and $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ have been studied. The reaction of $\left[C o(e n)(p t d n)_{2}\right]^{+}$proceeded by three pathways: inner-sphere monobridged $\left(k^{255^{\circ}} \mathrm{C}=(2.5 \pm 0.2) \times 10^{-3} \mathrm{M}^{-1}\right.$ $\left.\mathrm{s}^{-1}, \Delta H^{\ddagger}=13.7 \pm 0.9 \mathrm{kcal} \mathrm{mol}^{-1}, \Delta S^{\ddagger}=-24 \pm 3 \mathrm{eu}\right)$, inner-sphere dibridged ($k^{25^{\circ} \mathrm{C}}=(2.1 \pm 0.2) \times 10^{-3} \mathrm{M}^{-1} \mathrm{~s}^{-1}, \Delta H^{\ddagger}$ $\left.=13 \pm 1 \mathrm{kcal} \mathrm{mol}^{-1}, \Delta S^{\ddagger}=-28 \pm 5 \mathrm{eu}\right)$, and outer sphere ($k^{25^{\circ} \mathrm{C}}=(2.0 \pm 0.2) \times 10^{-3} \mathrm{M}^{-1} \mathrm{~s}^{-1}, \Delta H^{\ddagger}=10 \pm 2 \mathrm{kcal}^{2} \mathrm{~mol}^{-1}$,
 $\mathrm{s}^{-1}, \mu=1.0 \mathrm{M}\left(\mathrm{LiClO}_{4}\right)$. This reaction was shown to occur partially by an inner-sphere path. For $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ only an outersphere path is possible and $k^{50^{\circ} \mathrm{C}}=1.1 \times 10^{-4} \mathrm{M}^{-1} \mathrm{~s}^{-1}, \mu=1.0 \mathrm{M}\left(\mathrm{LiClO}_{4}\right)$. Rate trends within the series [$\mathrm{Co}(\mathrm{ptdn})_{3}$], $\left[\mathrm{Co}(\mathrm{en})(\mathrm{ptdn})_{2}\right]^{+} .\left[\mathrm{Co}(\mathrm{en})_{2}(\mathrm{ptdn})\right]^{2+}$, and $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ as well as within the analogous oxalato- $\mathrm{Co}(\mathrm{III})$ complexes are discussed in terms of ligand field effects.

There do not appear to have been many systematic studies of redox reactions of mixed chelate compounds in which the number of chelate rings of one kind is varied within a series. ${ }^{1}$ Such studies are hampered by synthetic difficulties involved in preparing the full series and by problems of solubility in the case of many ligands.

We have recently been interested in the reactions of mixed chelate compounds, particularly those involving pentane-

2,4-dionato and derivatives of this ligand. ${ }^{2}$ The investigation of rate trends throughout a series of mixed chelates was especially interesting from two points of view. First, the possibility that the changes in rate constants would vary systematically, based on ligand field effects, ${ }^{3}$ could be determined, and second, the differences in the detailed mechanism of electron transfer through chelates in general, a rather neglected topic in the study of redox chemistry, could be elucidated.

